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ABSTRAC Lysine demethylase 5A (KDMSA) is a negative regulator of histone H3 lysine

4 trimethylation (H3K4me3), a histone mark associated with activate gene transcrip-
tion. We identify that KDMSA interacts with the P-TEFb complex and cooperates with MYC to control
MYC-targeted genes in multiple myeloma cells. We develop a cell-permeable and selective KDM5 inhibi-
tor, JOKDB2, that increases H3K4me3 but paradoxically inhibits downstream MYC-driven transcriptional
output in vitra and in vivo. Using genetic ablation together with our inhibitor, we establish that KDM5A sup-
ports MYC target gene transcription independent of MYC itself by supporting TFIIH (CDK7)- and P-TEFb
(CDK9)-mediated phosphorylation of RNAPII. These data identify KDM5A as a unique vulnerability in
multiple myeloma functioning through regulation of MYC target gene transcription and establish JQKD82
as a tool compound to block KDM5A function as a potential therapeutic strategy for multiple myeloma.

SIGNIFICANCE: We delineate the function of KDM5A in activating the MYC-driven transcriptional
landscape. We develop a cell-permeable KDM5 inhibitor to define the activating role of KDM5A on MYC
target gene expression and implicate the therapeutic potential of this compound in mouse models and

multiple myeloma patient samples.

See related video from the AACR Annual Meeting 2021: https://vimeo.com/554896826

INTRODUCTION

Multiple myeloma is a malignant plasma cell disorder
accounting for 10% of hemarologic malignancies (1). Although
high-dose chemotherapy and targeted agents have improved
patient outcomes, multiple myeloma remains an incurable dis-
order (1). Thus, there is an urgent need to develop novel thera-
peutic strategies. One of the most crucial molecular events in
the development of multiple myeloma is ¢-MYC (MYC) dys-
regulation resulting from translocation or amplification of the
MYC locus, loss of MYC checkpoints such as p33, or activation
of upstream signaling (2-4). MYC is an oncogenic transcrip-
tion factor that controls gene expression and is broadly dysreg-
ulated in a variety of human cancers (S, 6). High expression of
MYC proteins in tumor cells results in transcriptional ampli-
fication, leading to selective dependence on transcriptional
processes (S, 7, 8). Importantly, MYC plays a key role in the
progression from monoclonal gammopathy of undermined
significance (MGUS) to multiple myeloma, which is evidenced
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by che Vk*MYC mouse model (9). In this mouse model, trans-
genic MYC is sporadically activated in B cells undergoing
somatic hypermutation in an activation-induced deaminase-
dependent manner, resulting in the development of indolent
multiple myeloma; however, additional oncogenic events are
required for developing aggressive multiple myeloma (10). In
agreement with this finding, MYC pathway genes are activated
in multiple myeloma patient samples, but notin MGUS (9, 11).
MYC is also required for the maintenance of multiple myeloma
cells. Knockdown or pharmacologic inhibition of MYC criti-
cally impairs the growth of multiple myeloma cells (12-14).
Thus, MYC is a central target of interest in multiple myeloma.
Unfortunately, therapeutic targeting of MYC proteins has been
challenging to accomplish (15). Furthermore, baseline MYC
function is required for survival and differentiation of a variety
of untransformed cells (16). As a result, interest has developed
in identifying highly expressed, lineage-specific targers that
cooperate with MYC function, to restrict the scope of inhibi-
tion to a particular cell of interest.
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Targeting epigenetic-modifying enzymes represents one
method of inhibiting MYC function (15). Our previous studies
have demonstrated that inhibition of epigenetic proteins involved
in the regulation of postrranslational modifications (PTM) of
histones results in antitumor effects by modifying chromatin
dynamics and gene expression programs (17, 18). Importantly,
inhibirion of these epigenetic proteins is tolerated in vivo, indicat-
ing a potential therapeutic window for their use (17, 18). These
PTMs, including methylation and acetylation, are modulated
by “writer” and “eraser” enzymes that may be context-specific
targets and result in potent transcriptional effects (15, 19, 20).
Jumonji C domain-containing proteins are “eraser” enzymes that
remove histone methylation marks (21). One Jumonji C domain-
containing protein is Lysine demethylase SA (KDM3A; also known
as JARID1A/RBP2), which, along with its subfamily members
(KDMS5B-5D), functions to remove histone H3 lysine 4 dimeth-
ylation and trimethylation (H3K4me2 and H3K4me3) marks.
H3K4me3 is a key epigenetic mark associated with transcrip-
tional gene activation (22, 23), and involved in development and
differentiation (23-25). KDMS5A promotes tumorigenesis, metas-
tasis, and drug resistance in various cancers, including acute
myeloid leukemia, lung cancer, and breast cancer (26-29). MYC
binding to gene promoters is exquisitely sensitive to H3K4me3
(30), and loss of KDM proteins results in altered differentiation
patterns and cell-cycle arrest across normal cells (31, 32), suggest-
ing that KDM proteins may represent a potential cooperating
oncogene with MYC. To investigate the function of KDMS, mul-
tiple KDMS inhibitors have been developed (33-35). These com-
pounds display a high degree of selectivity for KDMS5 proteins but
have poor cell permeability and modest cellular activity. Despite
these issues, inhibition of KDMS proteins in MM.1S multiple
myeloma cells results in cell-cycle arrest and H3K4me3 hyper-
methylation, indicating that KDMS proteins represent tractable
candidates for therapeutic targeting in multiple myeloma (353).

Building on this evidence, here we demonstrate that KDMSA
cooperates with MYC to regulate MYC target gene transcrip-
tion in multiple myeloma. We develop a novel prodrug-type
KDMS inhibitor, JQKDS82, which delivers the active binding
molecule KDM5-C49 to potently block KDMS5 function in
multiple myeloma cells both i vitro and in vivo. We use this
inhibitor, in combination with genetic knockdown studies, to
demonstrare that KDMSA cobinds with MYC at target gene loci
across the genome and activates MYC target genes by physically
interacting with the positive transcription elongation factor
b (P-TEFb) complex. KDMSA promotes transcriptional pause
release at MYC targert genes by demerthylaring H3K4me3, result-
ing in release of the transcription factor IID (TFIID) subunit
TATA-box binding protein associated factor 3 (TAF3) and phos-
phorylation of the carboxy-terminal domain (CTD) of RNA
polymerase II (RNAPII) subunit B1 (POLR2A). These findings
identify a novel mechanism by which KDM5A promotes multi-
ple myeloma growth through cooperarion with MYC to regulate
target gene transcription and provide a novel pharmacologic
agent for interrogation of KDMS5 protein function.

RESULTS
KDMS5 Mediates Multiple Myeloma Cell Growth

The oncogenic roles of the KDMS family of H3K4 dem-
ethylases have been studied in multiple cancers (36). Although
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KDMSB has previously been implicated in multiple myeloma
(33, 35), the biological impact of other KDMS members in
multiple myeloma remains unknown. To identify the indi-
vidual relevance of the KDMS familiy, we first examined gene
expression of KDMS isoforms in multiple myeloma using a
dataser of 559 newly diagnosed patients (37). Each KDMS5
member (KDMSA, KDMSB, and KDMSC) was highly expressed
in primary multiple myeloma samples (Fig. 1A), and higher
KDMSA expression was associated with poor overall survival,
whereas KDMSB and KDMSC expression was not related to
overall survival in this dataset (Supplementary Fig. S1A-S1C).
Evaluation of the Cancer Cell Line Encyclopedia (CCLE)
RNA-sequencing (RNA-seq) dataser (38) also indicated that
KDMSA-C were expressed across multiple myeloma cell lines
(n=20; Fig. 1B). We further confirmed KDMS protein expres-
sion in multiple myeloma cell lines and primary mulciple
myeloma patient samples (Fig. 1C). We did not obtain enough
normal plasma cell samples and thus did notassess KDMS pro-
tein expression in the normal counterpart of multiple myeloma
cells, bur KDMS protein was not detected in healthy volunceer-
derived B cells (Fig. 1C).

Because KDMS proteins were expressed in multiple mye-
loma cells, we sought to identify the selective effects of KDMS
on multiple myeloma growth. To do so, we transduced multi-
ple myeloma cell lines with lentivirus expressing shRNAs tar-
geting KDMSA, KDMSB, and KDMSC (shKDMSA, shKDMSB,
shKDMSC) or a control luciferase (shLuc), and measured
the response of multiple myeloma cell lines in cell growth
assays. Knockdown of either KDM isoform resulted in spe-
cific loss of each targeted protein without reduction of other
isoforms (Fig. 1D). Furthermore, loss of any KDMS impaired
the growth of three c-MYC-expressing multiple myeloma
cell lines, although the magnirude of effect was strongest for
KDMSA loss, and reduction of KDMSC did not decrease the
growth of MOLP-8 cells (Fig. 1D). These data indicate that
KDMSA and to a lesser extent, KDM5B and KDMSC play a
functional role in driving multiple myeloma cell growth.

Development of a Novel Cell-Permeable
KDM5-Selective Inhibitor

Because multiple myeloma displayed reliance on KDMS5
isoforms for growth, we sought to develop a high-potency,
KDMS5-selective inhibitor to study KDMS inhibition in can-
cer cells and animal models. To do so, we took advantage of
a prior KDMS-binding molecule, KDM5-C49, that displays
excellent inhibitory activity in biochemical assays though
poor activity in cell culture models due to the lack of cell
permeability (33). A derivative compound, KDMS5-C70, is
metabolized to KDMS5-C49 in cells, and while KDM5-C70
has cellular activity for KDMS5 inhibition, it still suffers
from poor delivery efficiency in cells and has limited activ-
ity in vivo (33). To overcome this obstacle and study the
effects of KDMS inhbition in cell and animal models, we
used a prodrug approach, and designed a compound called
JQKDS82. JQKDS82 is a more stable ester of KDMS5-C49
that is able to deliver the active molecule KDM35-C49 to
cells more efficiently (Fig. 2A). We first assessed the abil-
ity of JQKD82 to inhibit KDMS in biochemical assays.
JQKDS82 showed similar enzymaric inhibitory activity as
the prior report of ester KDM5-C70 in biochemical assays
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Figure 1. KDMS mediates multiple mye- A B
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of KDMS function (Supplementary Fig. S2A; ref. 33). As
with KDMS5-C49, JQKDS82 did not show activity toward
other KDMs, such as KDM3 (Supplementary Fig. $2B),
and demonstrated some selectivity for KDMSA over other
KDMS isoforms (Supplementary Fig. S2B). Cocrystalliza-
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tion of JQKDS82 with KDMSB revealed that JQKD82 hydro-
lyzed under cocrystallization conditions and produced the
product KDMS5-C49 bound to KDMSB (Fig. 2B) to give
matched cocrystal structure as the previously reporred
KDMS-C49 crystal structure (33).
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Figure 2. JQKDB2is a cell-permeable KDM5-selective inhibitor. A, Chemical structures of the prodrug esters JQKD82 and KDM5-C70, and their active
metabolite KDM5-C49. B, The crystal structure of JQKD82 bound to KDM5B was resolved after soaking the prodrug ester JQKD82 with KDM5B. This
resulted in a crystal resolved for the acid derivative KDM5-C49 derived from JQKD82 under crystallization conditions, demanstrating that KDM5-C49
interacts with Glu501 to chelate with metal and with Lysine 517 on the backbone for selectivity against KDM5 in the demethylase catalytic domain.

C, Intracellular concentrations of compounds (both parent compounds and metabolite KDM5-C49) were determined using LC/MS after treatment with
KDM5-C70 or JOKDB2 at 10 umol/L for 2 hours in CacoZ cells. Data are shown as average + 5D of duplicate testing. *, P <0.05; unpaired Student t test.
D, Immunoblot analysis for H3K4me3 using H3 as loading control after treatment with KDM5-C49, KDM5-C70, or JQKD82 at 0.3 pmol/L or DMSQ for

24 hours in MM.15 cells. E, Immunablot analysis for H3K4me3, H3K9me3, H3K27me3, H3K36me3, and H3K79me3 using H3 as loading control after
treatment with JOKD82 (0.3 or 1 umol/L) or DMSO for 24 hours in MM.1S and MOLP-8 cells. Densitometry analysis displayed on the right (numbers are
levels of methylation as a percentage of DMSO control).
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Next, we assessed whether the phenol ester introduced in
JQKDS82 improved drug delivery into cells. To this end, we
performed cell permeability assays using Caco2 monolayer cells
treated with JQKDS82 for 2 hours, after which we measured
JQKDS2 and KDMS5-C49 concentration in cell lysates by liquid
chromarography/mass spectrometry (LC/MS). JQKD82-treated
Caco2 cells displayed a higher intracellular concentration of
both JQKDS82 and its metabolite KDM5-C49 than did Caco2
cells treated with KDMS5-C70, indicating thar JQKDS82 has
improved cell permeability and more efficiently delivers the
active metabolite KDMS5-C49 i vitro (Fig. 2C). As expected,
even at low concentrations, JQKD82 caused an increase in the
global H3K4me3 level of MM.1S cells, which was greater than
that induced by equimolar concentrations of KDM5-C70 or
KDMS-C49 (Fig. 2D). Assessment of multiple other histone
lysine methylation marks indicated thar JQKD82 induced spe-
cific increases of H3K4me3, but has no effect with either other
histone methylation marks, such as H3K9me3 and H3K27me3,
or H3K4mel, which is in agreement with the KDMS methyla-
tion profile (Fig. 2E; Supplementary Fig. S2C; ref. 33). Together,
these data suggest that JQKD82 represents a specific and cell-
permeable KDMS inhibitor.

KDMS Inhibition with JOKD82 Inhibits
Multiple Myeloma Cell Growth

Because KDMS expression is required for multiple mye-
loma cell growth, we sought to examine the effects of KDMS5
inhibition with JQKD82 on multiple myeloma cells. JQKDS82
inhibited the growth of MM.1S cells in a dose- and time-
dependent manner (Supplementary Fig. S3A). JQKD82 was
7-fold more potent than KDMS5-C70 and more than 20-fold
more potent than KDM5-C49 ac eliciting growth suppression
in MML1S cells (JQKD82 IC;, = 0.42 pmol/L, KDMS5-C49 IC; >
10 pmol/L, KDMS-C70 ICs = 3.1 pmol/L; Fig. 3A). Further-
more, JQKDS82 treatment resulted in suppressed growth in a
panel of multiple myeloma cell lines (Fig. 3B). These results
were validated by treatment of five primary multiple myeloma
patient samples with JQKD82, which demonstrated a 40% to
50%reduction in cell viability after S days of treatment (Fig. 3C).
As a control, we isolated normal B cells from healthy indi-
viduals and treated these cells with JQKD82. CD40 antibody-
and IL4-stimulated B cells were insensitive to the effects of
JQKDS82 (Fig. 3D), indicating that KDMS5 inhibition may
have a favorable in vivo therapeutic index. To further establish
whether JQKDS82 was effective at suppressing growth across
multiple distinct lineages, we petformed a screen of 367 dis-
tinct cancer cell lines, which were barcoded and pooled (39).
JQKDB82 was effective at reducing the growth of multiple
tumor cell lineages, including multiple myeloma cells, indicat-
ing potential cross-cancer utility (Supplementary Fig. S3B).

Because JQKD82 suppressed growth of multiple myeloma
cells in vitro, we sought to idenrify whether this was due
to loss of proliferation, induction of apoptosis, or both.
Importantly, treatment with JQKD82 induced G, cell-cycle
arrest by 48 hours (Fig. 3E). This arrest was also observed at
96 hours (Supplementary Fig. S3C). JQKD82 modestly elic-
ited apoptosis after 72 hours, as evidenced by annexin V stain-
ing (Fig. 3F). These results indicate that the growth inhibitory
effect of JQKD82 is primarily due to cell-cycle arrest racher
than apoptosis. Consistent with JQKD82’s effect, G, cell-cycle
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arrest was also observed after KDMS5A knockdown (Supple-
mentary Fig. S3D).

JQKD82 Has Anti-Multiple Myeloma
Activity In Vivo

Because JQKDS82 has induced anti-multiple myeloma activ-
ity in vitro with no effects on normal B cells, we sought to
identify whether JQKDS82 was effective in vivo. To begin, we
performed pharmacokineric analysis of JQKD82 on CD1 mice
treated at 50 mg/kg by intraperitoneal (i.p.) injection. Pharma-
cokinetic analysis demonstrated that the active component,
KDMS5-C49, was detectable in murine serum with a 6-hour half-
life (Supplementary Fig. S3E) and a maximum concentration
(Crnax) ©f 330 pmol/L. Mice treated with JQKD82 twice daily at
50 or 75 mg/kg, i.p., maintained stable body weights, indicat-
ing that compound treatment was tolerable (Supplementary
Fig. S3F and S3G). Next, we examined the effects of JQKD82 on
multiple myeloma #n vive, using a disseminared tumor model.
To do so, we engineered MOLP-8 cells to express luciferase and
then intravenously injected these MOLP-8 TurboGFP-Luc cells
into NSG mice. Once these cells had systemically engrafted, as
confirmed by sequential bioluminescence imaging (BLI), we
randomized mice to receive JQKD82 or vehicle (n = 9 for each
group) via intraperitoneal injection (Fig. 3G). Treatment with
JQKDS82 significantly reduced tumor burden, as detected by
sequential BLI (Fig. 3H and I), and improved overall survival
when compared with the vehicle-treated control group (Fig. 3]).

To assess the pharmacodynamic (PD) effects and efficacy
of JQKDB82 at higher doses, we evaluared the JQKD82 using
a plasmacytoma model of multiple myeloma. We subcutane-
ously injected MOLP-8 TurboGFP-Luc cells into NSG mice
and then treated them with JQKDS82 (75 mg/kg twice a day)
or vehicle control after tumor engraftment. Three mice for
each group, treated with either JQKDS82 or control vehicle for
7 days, were sacrificed for a PD study. Tumors were col-
lected from treated or control mice and subjected to immu-
nohistochemical (IHC) analysis. Consistent with our in vitro
observarions, JQKD82-treated tumors displayed an increase
in H3K4me3 levels and reduction in Ki67 staining, indica-
tive of a slower growth rate (Fig. 3K). These data indicated
that the cellular mechanism of JQKD82 activity remains on
target in vivo (Fig. 3K). In addition to this, we sought to deter-
mine whether JQKD82 treatment affected primary drivers of
multiple myeloma in vivo. Thus, we performed IHC to MYC
in JQKD82- and vehicle-treated tumors, demonstrating that
JQKDS82 resulted in a dramatic reduction of MYC immuno-
staining in vivo (Fig. 3K). In parallel to this, two groups of mice
were treated with either JQKDS82 or vehicle (» = 10 for each
group) once tumor engraftment was confirmed by sequential
BLI. As in our intravenous model, JQKD82 treatment for 14
days also significantly inhibited tumor growth, evidenced both
by BLI and tumor size measurement (Supplementary Fig. S3H
and S3I). These results indicate that JQKD82 is effective and
well tolerated in vivo in two models of multiple myeloma, and
suggests a link berween KDMS function and MYC expression.

KDM5 Inhibition Downregulates Expression of
MYC Target Genes

To further elucidate the molecular mechanism of KDMS5
function and JQKD82 activity, we next examined the effects
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Figure 3. JQKDB2 suppresses multiple myeloma (MM) cell growth. A, MM.1S cells were cultured with the indicated concentrations of KDM5-C49,
KDM5-C70. or JQKDB2 for 5 days. Viable cells were determined by MTT assay, and the cell growth relative to untreated contraol cells is shown. Data rep-
resent mean + 5D of triplicate cultures. B, Multiple myeloma cell lines were cultured with the indicated concentrations of JQKD82 for 5 days. Viable cells
were determined by MTT assay. and the cell growth relative to untreated control cells is shown. Data represent mean + SD of triplicate cultures.

C, CD138-positive primary multiple myeloma cells were treated with 3 pmol/L of JQKD82 or DMSO for 5 days. The cell viability relative to untreated
control was assessed by Cell TiterGlo assay. Data represent mean + 5D of duplicate or triplicate cultures. D, B cells from healthy donors were stimu-
lated by 10 pg/mL of CD40 antibody and 100 U/ml of IL4, and were then treated with JQKD82 for 5 days. The cell growth relative to JQKD82-untreated
control was assessed by Cell TiterGlo assay. Data represent mean + 5D of triplicate cultures. E, MM.1S and MOLP-8 cells were incubated with 1 pmol/L
of JOKDB2 for 48 hours. Cells were fixed, stained with propidium iodide, and analyzed for cell-cycle distribution using flow cytometry. F, MM.1S and
MOLP-8 cells were incubated with 1 pmol/L of JQKDB2 for 48 to 96 hours. Cells were stained with Annexin V and analyzed for apoptosis using flow
cytometry. Data represent mean + 5D of triplicate samples (E and F). *, P<0.05;**, P <0.01; ***, P < 0.001 compared with control; unpaired Student t
test. G, Schema of in vivo study using a disseminated model. MOLP-8 TurboGFP-Luc cells were intravenously inoculated into NSG mice. After disease
establishment confirmed by BLI, the mice were randomized to JQKD82 or vehicle group, and treated i.p. with JQKD82 at 50 mg/kg or vehicle twice a day
(BID), respectively, for 3 weeks, and followed for survival. H, Representative BLI of MOLP-8 TurboGFP-Luc cell xenografted mice after treatment with
JQKDB2 or vehicle control at a dose of 50 mg/kg i.p. twice daily. Images were obtained on day 17 after treatment initiation. Data are representative of
nine mice per group. I, Tumor burden was serially evaluated by BLI. Data represent mean + SEM. n = 9 mice per group. P =0.028 by comparing treatment
group against control group by unpaired Student t test. (continued on following page)

of compound treatment for 48 hours on gene expression scriptional activaror (40-44). Gene-set enrichment analysis
using RNA-seq. At this time point, a total of 1,450 genes (GSEA) showed that expression of G,-S cell-cycle check-
were upregulated, while 1,253 genes were downregulared, point genes were reduced by JQKD82 treatment, consist-

compared with DMSO-treated control cells (P,y; < 0.05; ent with our cell-cycle analysis (Supplementary Fig. S4A).
Supplementary Table S1). These data are in agreement with Importantly, GSEA across the hallmark gene sets from the
previous reports that the KDMS5 demethylase functions Molecular Signatures Database (MSigDB) showed MYC gene
not only as a transcriptional repressor bur also as a tran- sets were the most strongly downregulated class (Fig. 4A
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Figure 3. (Continued) J, Kaplan-Meier curves showing the survival of JQKDB2-treated mice or vehicle control mice. P < 0.0001 by the log-rank test.
K, IHC analysis for H3K4me3, Ki67, and MYC in the subcutaneous tumor samples from the MOLP-8 TurboGFP-Luc-injected mice treated with JQKD82 or
control. Scale bars, 50 pm. Data are representative of three independent tumors per treatment group.

and B), paralleling the downregulation of MYC in our in vive
xenograft results. Because disruption of MYC may result in
loss of transcriptional amplification (5, 8), we next examined
the expression of housekeeping genes, which were relatively
unchanged at this time point (Fig. 4C). Quantitative real-
time PCR confirmed reduced mRNA expression of both MYC
and MYC targer genes after JQKD82 treacment in MM.1S
and MOLP-8 cells (Fig. 4D; Supplementary Fig. S4B). We
next asked whether KDMS5A, KDMSB, or KDMS5C medi-
ated the transcriptional activation of MYC rarget genes. The
expression of MYC target genes was largely diminished by
KDMS5A knockdown in MM.1S and MOLP-8 cells, whereas
these genes were only modestly diminished by KDMS5C
knockdown and not at all by KDMSB knockdown (Fig. 4E;
Supplementary Fig. S4C). MYC protein expression was also
consistently reduced by depletion of KDMSA (Fig. 4E; Sup-
plementary Fig. S4C), again paralleling our in vive analysis.
These results suggest that KDMSA, but not KDMSB and
KDMSC, mainly functions to control expression of MYC and
MYC rarget genes.

KDM5A and MYC Co-occupy and
Activate Their Target Genes

MYC is key to multiple myeloma pathogenesis and mainte-
nance, and our dara demonstrated its mRNA expression was
under KDMSA regulation. Thus, we sought to further investi-
gate the function of KDMSA in multiple myeloma. To begin,
we performed chromatin immunoprecipitation followed by
sequencing (ChIP-seq) analysis of the KDMSA protein in
MM.1S cells (Supplemenrtary Fig. S5A). KDMSA was noted
to bind preferentially to intergenic (49%) and upstream/pro-
moter (29%) loci in MM.1S cells (Supplementary Fig. S5B).
Indeed, substantial KDMSA enrichment was observed around
the transcriptional start sites (TSS; Supplementary Fig. S5C).
Motif analysis of the top 200 KDMSA binding peaks revealed
enrichment for the previously reported KDMSA consen-
sus motif (Supplementary Fig. S5D; ref. 45). Sacisfied that
KDMSA was binding to KDMSA sites, we next compared
KDMS5A-bound sites with activated promoter (H3K4me3),
promoter/enhancer (H3K27ac), and repressed promoter
(H3K27me3) histone marks. KDMSA colocalized genome
wide to activated promoter and promoter/enhancer marks,
indicaring the presence of KDMSA art transcriptionally com-

petent loci (Supplementary Fig. S5C). To identify proteins
that cobound along with KDMSA across the genome, we
compared these KDMSA ChIP-seq results wich publicly avail-
able ChIP-seq data in MM.1S cells by ChIP-Atlas (46). By this
analysis, KDMSA colocalized with MYC across the genome in
MM.1S cells (Fig. SA; Supplementary Table S2). Furthermore,
we found that KDMSA-bound sites significantly overlapped
with ChIP peaks of transcriptional machinery components,
including CDK7, CDK9, and RNAPII (Fig. SA; Supplemen-
tary Table S2).

Next, we sought to examine the locus-specific effects of
KDMSA by integrating our RNA-seq and ChIP-seq results.
KDMS inhibition activated or repressed KDMSA-bound genes
in. a target-dependent manner (Supplementary Fig. SSE).
Notably, most of the genes downregulated by JQKD82 (84%,
1,048 ourt of 1,253) were co-occupied by KDMSA and MYC
at the TSS (Fig. 5B), in addition to CDK7, CDK9, and
RNAPIL The gene list included the reprentative MYC target
genes, including CDK4 and NOLCI (Fig. 5C; Supplementary
Fig. SSF; refs. 47, 48). Downregulated genes had greater occu-
pancy of MYC around the TSS compared with other KDM5A
and MYC co-occupied genes that were not downregulated
by JQKD82 (Fig. 5B). Thus, based on these analyses, we
hypothesized that KDMSA may directly activate MYC target
genes downregulated by JQKDS82. To test this possibility,
we performed reporter assays in 293T cells using a reporter
construct containing the regulatory element (between base
pairs =563 and +574 relative to the TSS) of human CDK4, a
known representative MYC rarget in B cells (48). Our ChIP-
seq analysis demonstrared that this element is marked by
binding of KDMSA, MYC, CDK7, CDK9, and RNAPII in mul-
tiple myeloma cells (Fig. 5C). Expression of KDMS5A increased
CDK4 promoter activity, which could be partially blunted
by JQKD82 (Fig. 5D). Moreover, KDM5A and MYC coop-
eratively increased CDK4 promoter activity (Fig. SE). These
results indicate that KDMSA directly enables MYC targer
gene expression and this activation can be partly blocked by
catalytic inhibition of KDMSA.

To further characterize the mechanism of transcriptional
regulation by KDMSA, we next identified the proteins that
physically interact with KDMSA. We expressed Flag-tagged
KDMSA in 293T cells, and then performed coimmuno-
precipitation followed by mass spectromertry. This analysis
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Figure 4. Inhibition or knockdown of KDM5A downregulates expression of MYC-regulated genes. A, RNA-seq was performed on RNA extracted from
MM.1S cells treated with 1 pmal/L of JOKDB2 or DMSO control for 48 hours. GSEA for transcriptional hallmarks (Broad) summarized by a bubble plot is
shown. Size of the bubbles indicates significance from nominal P value, and the normalized enrichment score (NES) indicates the strength and direction of
the enrichment. n = 2 independent treatments, RNA extractions, and RNA-seq reactions per group. B, GSEA plots for MYC target genes after treatment with
JOKDB2 in MM.1S cells, across two biological replicates. FWER. family-wise error rate. C, Direct comparison of log; fold change (L2FC) in RNA expression
from samples in A, for housekeeping genes (left) and MYC target genes (right), summarized by boxplots and violin distributions. Comparisan by Welch t test
resulted in highest significance, P= 0. D, Expression levels of representative MYC target genes were assessed by quantitative real-time PCR after treatment
with 1 pmol/L of JQKD82 or DMS0 control for 48 hours in MM.1S cells (left). Data are normalized against the housekeeping control gene RPLPO. The
expression relative to DMSO (control) is shown as mean + SD of triplicate measurements. **, P < 0.01; ***, P <0.001 compared with control; unpaired Student
t test. Immunoblot analysis for MYC and actin (loading control) after treatment with JQKD82 at 1 pmol/L or DMSO0 for 48 hours in MM.15 cells (right).

E, Expression levels of representative MYC target genes were assessed by quantitative real-time PCR after transduction of shKDM5A, shKkDM5B, or
shKDMSC in MM.1S cells (left). Data are normalized against the housekeeping control gene RPLPO. The expression relative to shLuc (log; fold change) is
shown as mean + 5D of triplicate measurements. *, P <0.05; **, P <0.01; ™*, P <0.001 compared with shLuc (control); unpaired Student t test. Immunoblot
analysis for KDM5A, KDM5SB, KDM5C, MYC, and GAPDH (loading control) after transduction of shkDMSA, shKDM5B, shKDMSC, or shLuc in MM.1S

cells (right).

identified 201 potential KDMSA binding proteins, with a
cutoff of >2-fold enrichment compared with empty vector-
transduced control (Supplementary Table S3), and this list
included several previously known KDMS5A binding partners,
such as SIN3B, EMSY, PHF12, GATAD1, ZMYNDS, ZNF687,
and ZNF592 (49-51). Consistent with our ChIP-seq analysis,
we also identified a physical interaction of KDMSA with CDK9
in addicion to the P-TEFb complex member CCNT2. P-TEFb
is 2 CCNT2- and CDK9-containing protein complex that pro-
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motes transcriptional elongation (52). We then validated that
Flag-tagged KDMSA physically interacts with CCNT2 and
CDKS9 by coimmunoprecipitation assays in 293T cells (Fig. 5F).
Supporting this interaction, we identified that KDM35A and
CCNT2 could be colocalized in the nucleus of 293T cells by
immunofluorescent assay (Fig. 5G). To further establish this
interaction, we then performed coimmunoprecipitation assays
with antibodies recognizing endogenous KDMSA and CCNT2
in MM.1S cells. Immunoprecipitates of either KDMSA or
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Figure 5. KDMSA and MYC co-occupy and activate the genes downregulated by JOKD82. A, Heatmap showing KDM5A enrichment at regions bound by
MYC, CDK7, CDK9. and RNAPII in MM.15 cells, resolved by ChiP-sequencing (+ 5 kb from each of the protein-bound regions are shown). B, Venn diagram
depicting the overlap of genes co-occupied by KDMSA and MYC at TSS and genes downregulated by JOKDB2 in MM.1S cells (top). Metagene plots
showing occupancy of MYC and KDM5A at genes downregulated by JQKD82 (right) and those not downregulated by JOKD82 (left) in MM.1S cells (bot-
tom). RPM, reads per million mapped reads. C, Representative gene tracks demonstrating enrichment of KDMSA, H3K4me3, MYC, CDK7, CDKS, and
RNAPII at MYC target gene loci (CDK4 and NOLC1) in MM.15 cells. D, 293T cells were cotransfected with 50 ng of human CDK4 regulatory element-
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erase activities were measured. Data represent mean + SD of triplicate samples. **, P < 0.01; ***, P <0.001; unpaired Student t test (D and E). F, 2937 cells
expressing FLAG-tagged KDMSA were harvested; cell lysates were then immunoprecipitated (IP) with anti-FLAG (mouse menoclonal), and subjected to
immunablot analysis with anti-FLAG, anti-CCNT2 (rabbit polyclonal), and anti-CDK9 (rabbit monoclonal). (continued on next page)

CCNT2 demonstrated the presence of the other protein, indi-
cating that this interaction is conserved in multiple myeloma
cells (Fig. SH). To further explore these interactions in the set-
ting of KDMSA inhibition, we then developed a biotinylated
chemical probe, KDMS5-C49-Biotin, based on the structure

AA‘ —R American Association for Cancer Research®

guidance by linking the biotin on KDMS5-C49 at the position
that doesn’t interfere with the binding to KDMS (synthesis des-
cribed in Supplementary Methods). Using KDMS5-C49-Biotin,
we performed chemical pull-down experiments using cell
lysates from MM.1S cells. We used free biotin or the parental
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Figure 5. (Continued) G, 293T cells were transfected with eGFP-KDMSA together with mCherry-CCNT2. After fixation, nuclei were stained with
DAPI. Localizations of KDOMS5A and CCNT2 were observed using confocal laser scanning microscopy. Scale bars, 10 um. H, Cell lysates from MM.1S

cells were immunoprecipitated with anti-KDMS5A, anti-CCNT2, or normal rabbit IgG (control) and subjected to immunoblot analysis with anti-KDM5A or
anti-CCNT2. 1, Cell lysates from MM.1S cells were incubated with KDM5-C49-Biotin, free biotin, or KDM5-C49 at 100 pmol/L for 24 hours. The chemical
probes were pull down with streptavidin agarose resin, and proteins associated with probes were subjected to immunoblot analysis with anti-KDM5A,

anti-CDKS, or anti-CCNT2.

compound KDM3-C49 as control. The strepravidin agarose
resin was then used to pull down the KDM5-C49-Biotin and
proteins associated with this probe from cell lysates after
24-hour incubation of KDMS-C49-Biotin with MM.1S cell
lysate. Our results showed that KDMS5-C49-Biotin can pull
down KDMSA, together with CCNT2 and CDK9, while the
parental compound KDMS5-C49 was not pulled down by the
beads and biotin alone did not associate with these proteins
(Fig. 5I). This experiment provides additional evidence that
KDMSA physically interacts with CCNT2 and CDK9 in the
P-TEFb complex. Together, these data suggest that KDM5A
physically interacts with components of P-TEFb in multiple
myeloma cells and may play a role in the regulation of tran-
scriptional elongartion in multiple myeloma cells.

JQKDB82 Inhibits KDM5A Transcriptional
Activating Function via Suppressing
Phosphorylation of RNAPII

We next examined the effects of JQKD82 on H3K4me3
genome wide in MM.1S cells. We found that H3K4me3
levels were globally increased after JQKDS82 treatment, evi-
denced by ChIP with reference exogenous genome (ChIP-
Rx), where Drosophila chromatin is spiked in as a control for
normalization. This strategy is needed because increases in
H3K4me3 were expected to be global in nature, and would
therefore confound an analysis using conventional reads per
million mapped reads ChIP-seq normalization (53). With
this approach, we observed that the absolute increase in
H3K4me3 levels was more prominent at TSS proximal sites
(promoters) compared with TSS distal sites (enhancers; Sup-
plementary Fig. S6A and S6B). We then analyzed H3K4me3
levels at the TSS of KDMSA and MYC co-occupied genes,
splitting into genes that were downregulated or not. The
baseline H3K4me3 level at the TSS of genes downregulated
by JQKDS82 treatment was higher than in nondownregulared
genes even after the increase, suggesting that genes with the
highest H3K4me3 levels are the most modulated by KDMSA
enzymatic activity (Fig. 6A). Knockdown of KDMSA phe-
nocopied the effects of JQKD82, increasing H3K4me3 levels

at MYC rarget genes (Supplementary Fig. S6C). Because
H3K4me3 is an important modification for active transcrip-
tion and assembly of RNAPII into the transcriptional preini-
tiation complex (54), we next examined how excess H3K4me3
induced by KDMSA inhibition impacted active genes. The
H3K4me3-decorated +1 nucleosome is physically located at
the boundary between the RNAPII pause site and the rest of
the gene body. Strong, fixed positioning of the +1 nucleo-
some results in RNAPII stalling (55), and the H3K4me3
mark anchors the basal RNAPII-bound transcription factor
TFIID (54). Thus, since KDMS5 inhibition resulted in hyper-
methylation preferentially at proximal TSS, we hypothesized
that KDMSA activity demethylates the H3K4me3 anchor,
enabling RNAPII phosphorylation and pause release. As pre-
dicted, treatment with JQKD82 followed by ChIP-seq using
phospho-specific antibodies to SerZ and Ser5 of RNAPII
demonstrated diminished phosphorylation levels at KDMSA
and MYC co-occupied genes whose expression was downregu-
lated by JQKD82 (Fig. 6B), which is exemplified by MYC and
the MYC target, NOLCI, loci (Fig. 6C). Furthermore, JQKDS2
only modestly hindered recruitment of CDK7 and CDKY,
the RNAPII Ser2/5 kinases, to these loci (Supplementary
Fig. 86D), suggesting that hyper-H3K4me3 primarily inter-
feres with the function, not the localization, of these kinases.

Next, to interrogate the contribution of KDMSA to RNAPII
pause release, we analyzed the traveling ratio (TR, or the paus-
ing index) at genes co-occupied by KDMSA and MYC and
whose expression was downregulated after JQKDS82 treatment,
and found an increase in pausing both with JQKDS82 treat-
ment and by shKDMSA knockdown (Supplementary Fig. S6E
and SG6F). Pausing, just as the H3K4me3 levels, was increased
globally for genes sensitive or insensitive to KDMS3A inhibition
(Fig. 6D). Then we separated the genes according to CDK7
inhibitor (THZ1; ref. 56)-sensitive and -insensitive groups to
determine if transcription pausing correlated with CDK7 sen-
sitivity. Again we saw similar increase in pausing index in
both THZ1-sensitive and -insensitive genes (Fig. 6D). This
indicated that failed pause release is not the primary determi-
nant of the transcription decrease elicited by JQKD82. We then
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reasoned rhat because KDMSA and CDK?7 are positively cor-
related (Fig. SA), that the genes most sensitive to CDK?7 inhi-
bition would also lose RNAPII SerS phosphorylation to a
greater extent than insensitive genes. Global analysis showed
most genes are mildly pausing and also losing RNAPII SerS
phosphorylation in the gene body (Supplementary Fig. S6G).
However, while the global pausing trend was not different
among these gene sets, loss of RNAPII Ser5p was significantly
greater at CDK7- and KDM5A-sensitive genes (Fig. 6E).

We then looked at the assembly of the transcriptional pre-
initiation complex. TAF3, one of the TFIID subunits, anchors
TFIID to H3K4me3 at TSS-proximal nucleosomes (54, 57). Fur-
thermore, evidence indicates that other components of TFIID,
such as the subunit TAF7, are able to inhibit TFIIH (CDK7)
and P-TEFb (CDK9) kinase activities, in a context-dependent
manner (58). These data suggested a potential link between
binding of TAF3 to H3K4me3 and TFIIH and P-TEFb funcdon.
Thus, we hypothesized that hypermethylation of H3K4me3
at TSS-proximal nucleosomes would result in anchored TAF3
and abnormal TFIID rerainment, resulting in hindered TFIIH
and P-TEFD activities. To test this hypothesis, we measured the
genome-wide binding changes of TAF3 in MM.1S cells treated
with either JQKDS82 or vehicle control. To ensure our detection
of global changes in TAF3 were appropriately normalized, we
again performed spike-in normalization with ChIP-Rx. In con-
trast with vehicle-treated controls, JQKD82-treated MM.1S cells
displayed increased H3K4me3 and TAF3 binding at the TSS of
genes that were downregulated by JQKD82 (Fig. 6F). Indeed,
TAF3 is bound to CDK7-sensitive genes at a much higher level,
suggesting that there is an H3K4me3/TAF3/CDK7 axis that
KDMSA is recruited to modulate (Fig. 6G).

Collectively, these results support a model that KDMSA
functions to control expression of MYC rtarget genes by
reducing TSS H3K4m3 levels at these gene loci, resulting in
TFIID (TAF3) release, and phosphorylation of serine 5 resi-
due on RNAPII by CDK7. In contrast, inhibition or knock-
down of KDMSA induces TSS-proximal hyper-H3K4me3,
resulting in aberrant TFIID (TAF3) anchoring that inhibits
productive RNAPII phosphorylation by TFIIH and P-TEFb,
thereby reducing MYC target gene transcriprion (Fig. 6).

MYC Target Genes Corequire KDM5A

Our data support a model of inhibition of phosphorylation
of RNAPII by hypermethylation of H3K4me3, demonstrated
in Fig. 6H. However, because JQKD82 results in hypermethyla-
tion of H3K4me3, downregulation of MYC and, indeed, down-
regulation of MYC target genes, we could not formally identify
whether the dominant effect of KDMSA inhibition is mediared
by MYC itself or whether KDMSA inhibition has effects on
gene expression independent of MYC. To address this ques-
tion, we hypothesized thart if the dominant effect of KDMSA
inhibition was mediated by MYC itself, then exogenous over-
expression of MYC in a manner insensitive to KDMSA inhibi-
tion should result in rescue of MYC targer gene expression.
In contrast, if KDMSA directly regulates MYC target genes in
multiple myeloma cells, then we hypothesized that JQKD82
would result in cheir downregulation even in the setting of
exogenously expressed MYC protein (Fig. 7A).

To test these hypotheses, we derived MM.18S stably express-
ing either exogenous Flag-tagged MYC or empty vector as a

AA‘ —R American Association for Cancer Research®

control (Fig. 7B). Flag-tagged MYC was identified in stable
cells by quantirative real-time PCR and immunoblotting
(Fig. 7B). Treatment of empty vector cells with JQKDS82
resulted in downregulation of MYC mRNA and protein,
which could also be observed in MYC-overexpressing cells
because endogenous MYC level in these cells is similarly
dependent on KDMS3A, although exogenous MYC is not
affected (Fig. 7B). Nexrt, we treated these empty vector and
Flag-tagged MYC MM.1S cells with eicher vehicle or JQKDS82
for 48 hours and performed RNA-seq, correcting for global
effects on transcriptional amplification by using exogenous
RNA spike-in controls (ERCC) on a per-cell level (ref. 59;
Fig. 7C). Increased MYC levels were moderate in MYC-
overexpressing cells but enough ro rescue MYC (during
JQKDS82 exposure) back to a level indistinguishable from
empty vector-transduced MM.1S cells withoutr JQKDS82
treatment (Fig. 7D, top). In this condition, JQKDS2 resulted
in loss of expression of canonical (pan-cancer) MYC targets
and the MM.1S cell-specific MYC/KDMS5A cobound genes
sensitive to JQKD82, similar to empty vector control (Fig. 7C
and D, shown is the MYC rarget gene NOLCI as a representa-
tive example). Overexpression of MYC alone did not induce
further NOLCI expression, suggesting that NOLCI expression
is upregulared to the maximum level by endogenous MYC
in MM.1S cells (Fig. 7D). On the basis of our model (pre-
sented in Fig. 6H) and given that exogenous MYC could not
rescue the expression of MYC target genes downregulated in
response to JQKD82, we then hypothesized that overexpres-
sion of MYC would similarly be unable to rescue the defect in
RNAPII phosphorylation. To test this hypothesis, we treated
empty vector and Flag-tagged MYC MM.1S cells with either
vehicle or JQKDS82 for 48 hours and performed ChIP-Rx to
RNAP II Ser5 phosphorylation (Fig. 7E). Consistent with our
model and RNA-seq results, overexpression of MYC resulted
in increased SerS phosphorylation, which was reduced by
JQKD82 treatment (Fig. 7E). Together, these data indicated
that KDMS5A is directly required for the transcriprion of MYC
target genes, and that inhibition of KDMSA using JQKDS82
results in loss of RNAPII phosphorylation mediated by hyper-
methylation of H3K4me3 and anchoring of TFIID.

DISCUSSION

In the conrext of epigenetic regulation, recent studies have
suggested the pathologic relevance of KDMS5B in multiple mye-
loma (33, 35). Here, we demonstrate that the distince KDMS
subfamily member KDMSA plays a critical role in mulrtiple
myeloma cell growth through a unique link to MYC-driven
transcriptional programs. KDMSA, but not KDM5B, regulates
both MYC and the MYC-driven downstream transcriptional
network, suggesting distinct functions of these two H3K4
demethylases in multiple myeloma. KDMSA and MYC co-
occupy target genes on a genome-wide scale to orchestrate their
regulation of oncogenic target gene transcription in multiple
myeloma cells. Most of these KDM5SA and MYC co-occupied
regions, including the MYC locus itself, are located proximally
to the TSS of various genes, suggesting that KDMSA controls
MYC target gene expression at promoter regions.

KDMS family members remove the active transcrip-
tion mark H3K4me3. They are components of repressor
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Figure 6. JQKDB82 increases H3K4me3 and TFIID anchoring via TAF3, resulting in reduced RNAPII phosphorylation. A, Metagene plot of H3K4me3
level at the genes co-occupied by KOM5A and MYC at the TS5 in MM.1S cells, and separated into groups either downregulated by JQKD82 {red) or not
downregulated by JQKDB2 (blue). The gene set defined in Fig. 5B was used for analysis. MM.15S cells were treated with 1 umol/L of JQKD82 or DMSO for
48 hours. H3K4me3 level was measured by ChIP-seq normalized to reference exogenous spiked-in Drasophila chromatin (ChIP-Rx). RRPM, reference-
normalized reads per million. B, Metagene plot of RNAPII phosphorylated at Ser5 (SerSp) and Ser2 (Ser2p) ChIP-seq reads mapped to the gene loci
co-occupied by KDM5A and MYC at the TSS and downregulated by JOKD82 in MM.15 cells. MM.15 cells were treated with 1 pmol/L of JQKD82 or DMS0
for 48 hours. RPM, reads per million mapped reads. TES, transcription end site. C, ChIP-seq tracks of RNAPII (SerSp), RNAPII (Ser2p), and RNAPI| at
representative MYC target gene loci (MYC and NOLC1) after treatment with JOKD82 in MM.15 cells. D, JOKD82 induced changes in the pausing index
[the ratio of RNAPII ChiP-seq signal in the TSS region (TSSR) to the signal in the gene body] at CDK7 inhibitor (THZ1)-sensitive or -insensitive genes,
and JQKD8Z-sensitive or -insensitive genes in MM.15 cells. Gene sensitivity status was defined by gene expression changes genome wide in MM.15 cells
exposed to THZ1 (4 hours) or JQKDBZ (48 hours). P values were calculated by unpaired Student t test comparing genes of different sensitivity status.

E, JQKD82-induced changes in ChIP-seq signal of RNAPII (SerSp) in the body of genes classified as sensitive or insensitive to CDK7 or JQKD82 in MM.15
cells as in D. P values were calculated by unpaired Student t test comparing genes of different sensitivity status. F, TAF3 (the subunit of TFIID with a
H3K4me3 recognizing PHD domain) binding at JQKDB2-downregulated genes was measured by ChIP-seq normalized to reference exogenous (ChIP-Rx)
spiked-in Drosophila chromatin in MM.15 cells. Comparisan is made to H3K4me3 ChiP-Rx data in MM.15 cells treated with 1 pmol/L of JQKD82 or
DMSQ for 48 hours. G, ChiP-seq signal of H3K4me3, CDK7, TAF3, and KDMSA at the TSS of genes either sensitive to CDK7 inhibition by THZ1 (black line)
compared with THZ1-insensitive genes (gray line). H, Proposed model of KDM5A functions and the mechanism of action of JQKD82. KDM5A interacts
with P-TEFb (CCNT2 and CDKS) and transactivates MYC target genes. JOKD82 or knockdown of KDMSA induces hypermethylation of H3K4me3 (hyper-
H3K4me3), leading to anchoring of TFIID via TAF3 binding, which may function as a barrier to productive RNAPII phosphorylation by TFIIH (CDK7) and
P-TEFb (CDK9), thereby dampening pause release and reducing MYC target gene transcription (indicated by faded RNAPII elongation complex).
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genes require KDMSA even in the presence of supraphysiologic levels of MYC? B, FLAG-tagged MYC or empty vector was overexpressed in MM.15 cells.
Expression level of MYC measured by quantitative real-time PCR (RT-qPCR; top) and by immunoblot (bottom) compared to cells with empty vector after
treated with DMSO or 1 pmol/L of JQKDB2 for 48 hours. MYC quantitative real-time PCR results are normalized against RPLPO as a housekeeping con-
trol. For detecting both endogenous and exogenous MYC, the primers target only the CDS region (top). For detecting only endogenous MYC, the primers
target the region including SUTR because exogenous MYC does not include 5 UTR of the MYC gene (bottom). The expression relative to DMS0-treated
empty vector control is shown as mean + SD of triplicate measurements. C, MM.15 cells were treated as in B, and RNA was extracted for RNA-seq
analysis. This was then used to perform GSEA of MYC targets (top) and JQKD82-sensitive genes (bottom). Gene-level quantification was ERCC spike-in
normalized on a per-cell basis to adjust for changes in total RNA per cell. Changes in expression upon JQKD82 treatment were quantified and ranked

by log; fold change (L2FC., of transcripts per million), and enrichment scores were generated using the GSEA desktop software package. Gene expres-
sion changas were evaluated in this way from MM.LS cells with either empty vector (purple) or MYC overexpression vector (orange). n =2 independent

biological replicates per condition. (continued on next page)

complexes, including the Sin3B/HDAC and NuRD complexes,
and are therefore transcriptional corepressors (22, 23, 50, 51).
Indeed, KDMSs repress target gene expression by H3K4 dem-
echylation to induce various cellular and biological processes,
including DNA repair, differentiation, and transformation
(60-63). Despite these findings, accumulating evidence indi-
cates that KDMS proteins also function as context-specific
transcriptional activators (40-44). KDMS proteins activate
target genes via several distinct mechanisms, including inhibi-
tion of HDAC activity or enhancement of nuclear receptor-
mediared transcription (41,42, 64). Here, using anovel prodrug
KDMS inhibitor, we identify a subset of genes that are bound
and positively regulated by KDMSA. Importantly, the domi-
nant phenotype induced by KDMSA inhibition is cell-cycle
arrest, with a gene expression pattern consistent with inhibi-
tion of MYC target gene expression. These data indicate that
the dominant effect of KDMSA inhibition is loss of MYC
target gene oncogenic transcriptional output. We show that
KDMSA colocalizes with CDK7, CDK9, MYC, and RNAPIL
Furthermore, the KDMS inhibitor JQKDS82 induces hyper-

methylation of H3K4me3 and reduces phosphorylation of
RNAPII, accompanied by RNAPII pausing at the MYC target
loci. Our data support a model by which hypermerthylarion
of H3K4me3 results in ectopic anchoring of TAF3, forcing
reduced phosphorylation of RNAPIL In multiple myeloma
cells, this occurs predominantly at MYC target gene loci and
incriguingly, is partially independent of MYC expression icself.
These data suggest that KDM5SA may promote phosphory-
lation of the C-terminal domain of RNAPII with TFIIH and
P-TEFb by promoting the release of TFIID. Indeed, inhibition
of KDMSA results in anchoring of TFIID (Fig. 6F), which
includes TAF7 that may inhibit CDK7 and CDK9 kinase
activities (58). Consistent with this model, overexpression
of MYC is both insufficient to restore the JQKD82-induced
downregulation of MYC targets and RNAPII phosphory-
lation, indicating that KDM5A plays a functional role in
demethylating H3K4me3, resulting in the phosphorylation of
RNAPII at MYC target gene loci, partly independent of MYC
expression. While the precise mechanism of how KDMSA
facilitates the phosphorylation of RNAPII and RNAPII pause
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Figure 7. (Continued) D, RNA-seq from MM.15 cells for MYC and NOLC1 genes in TPM (transcripts per million) comparing DMSO versus JQKD82
treatment in the cellular context of either empty vector versus MYC overexpression. Error bars represent the SD across two independent biological
replicates. N.S., P> 0.1;**, P <0.005, unpaired Student t test. E, RNAPII (Ser5p) ChIP-seq with exogenous reference genomes (ChIP-Rx) from MM.1S
cells with either empty vector (left two panels) or MYC overexpression vector (right two panels), viewed at both MYC target genes (top two panels) and
JQKDB2-sensitive genes (bottom twa panels). Dotted lines indicate metagene signal from DMSO-treated cells, and solid lines indicate metagene signal

from JQKDB2-treated cells.

release is undetermined, it is likely to involve protein-protein
interactions with members of TFIID that suppress CDK7 and

CDKO9 acrivities, and remains an active area of interest.

With the design of the prodrug JQKDS82, we have success-
fully delivered a previously validared KDMS5-selective inhibi-
tor KDMS5-C49 (33) to cancer cells both i vitro and in vive.
JQKDS82 significantly prolongs the survival of tumor-bearing
mice, and no apparent toxicity was observed during 3-week
treatment, demonstrating its tolerability. In combinarion
with evidence for broad anticancer activity and limired roxic-
ity in vitro and in vivo, these data imply a promising therapeu-
tic index for KDMS inhibirion. Ongoing studies are direcred
at understanding the mechanism of selectivity for this appar-

ent therapeutic window, prior to clinical translation.

In summary, here we have revealed the biological significance

METHODS
Primary Cells (Multiple Myeloma Cells and Normal B Cells)

Bone marrow or peripheral blood samples were obtained from
patients with multiple myeloma or healthy donors with written
informed consent after approval of the Institutional Review Board of
the Dana-Farber Cancer Institute or Kumamoto University in accord-
ance with the Declaration of Helsinki. Mononuclear cells were iso-
lated from samples by Ficoll-Paque PLUS (GE Healthcare). Multiple
myeloma cells were enriched by anti-CD138 magnetic activated cell
separation microbeads (Miltenyi Biotec). Normal B cells from healthy
volunteers’ peripheral blood were enriched by negative selection
methods using EasySep Human B Cell Isolation Kit (STEMCELL
Technologies). For B-cell proliferation, isolated B cells were stimu-
lated by 10 pg/mL of human CD40 antibody (R&D systems) in the
presence of 100 U/mL of recombinant human IL4 (R&D Systems).

and molecular functions of KDMS5A in multiple myeloma. Our

dara identify a novel function of KDMSA that is required to sus-
tain and reinforce the MYC oncogenic transcriptional program
in multiple myeloma. Caralytic inhibition of KDMSA results
in hypermethylation of proximal TSS H3K4me3, resulting in
failed pause release at MYC-regulated genes. As MYC plays criti-
cal roles in driving tumorigenesis, these data indicate potential
clinical implications for KDMS5 inhibition using in vivo active
selective KDMS inhibitors, and a mechanism for identifying
on-target behavior of these compounds. Our results therefore
provide the rationale for further evaluation and development
of KDMS inhibitors as novel therapeutic strategies in multiple

myeloma and other KDMSA-dependent malignancies.

Cell Lines

Human multiple myeloma cell lines MM.1S, U266, and NCI-H929
were obtained from ATCC. The human multiple myeloma cell line
MOLP-8 was purchased from DSMZ. Human multiple myeloma cell
lines KMS-11 and KMS-20 were purchased from the JCRB Cell Bank.
Human multiple myeloma cell line OPM-1 is a gift from Edward
Thompson (University of Texas, Galveston, TX). The identities of
MM.1S, U266, OPM-1, NCI-H929, and KMS-11 were validated by STR
profiling (GenePrint10 System, Promega). MOLP-8 cells expressing
TurboGFP and luciferase (MOLP-8 TurboGFP-Luc) were generated by
retrovirally transducing TurboGFP-IRES-luciferase bicistronic expres-
sion vector into MOLP-8 cells. Human embryonic kidney cell line 293T,
human breast cancer cell line MCF7, and human colon cancer cell line
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Caco2 were otatined from ATCC. Cell lines were used within 3 months
after thawing. Mycoplasma contamination was excluded using the Myco-
Alert Mycoplasma Detection Kit (Lonza). All multiple myeloma cell
lines were maintained in RPMI1640 containing 100 U/mL penicillin
and 100 pg/mL streptomycin, supplemented wich 10% (v/v) FBS, and
2 umol/L t-glutamine in 5% CO, at 37°C. 293T and MCF?7 cells were
maintained in DMEM supplemented with 10% (v/v) FBS. Caco2 cells
were maintained in EMEM supplemented with 20% (v/v) FBS.

Chemicals

KDM35-C49 and KDMS-C70 were synthesized in the Qi Lab based
on literature-reported procedures (33). Compound JQKD82 and
KDMS5-C49-Biotin were designed and synthesized based on the scheme
listed in Supplementary Methods. The structure and purity of these
compounds were further confirmed by nuclear magnetic resonance
and LC/MS, with detailed descriptions in Supplementary Methods.

In Vivo Xenograft Models

Six-week-old female NOD.Cg-Prkdcd 112rg™™il/Sz] (NSG) mice
(from The Jackson Laboratory, catalog no: 0005557) were used in
this study.

For the disseminated model, 1 X 108 MOLP-8 TurboGFP-Luc cells
were injected intravenously into NSG mice. Tumor burden was seri-
ally monitored by BLI using IVIS Imaging System and Living Image
Software (PerkinElmer). After tumor engraftment, the mice were ran-
domly divided into two groups (JQKD82 treatment or vehicle control
group), and then i.p. treated with JQKD82 at 50 mg/kg as prepared
in the same manner in the pharmacokinetics study described in Sup-
plementary Methods or vehicle (DMSO in 10% of hydroxypropyl beta
cyclodextrin) twice a day for 3 weeks.

For the plasmacytoma model, 1 x 10° MOLP-8 TurboGFP-Luc cells
were injected subcutaneously into the right flank of NSG mice within
PBS mixed with 30% of Matrigel. Mice were serially imaged after inocula-
tion, In parallel, tumor size was measured using an electronic caliper, and
tumor volume was determined using the formula: (length x widch') x 27,
where length is greater than width. After tumor engraftment confirmed
by BLI signal and tumor size measurement, the mice were randomly
divided into two groups (JQKD82 treatment or vehicle control group),
and then i.p. treated with JQKDB82 at 75 mg/kg or vehicle twice a day for 2
weeks. Animal studies were performed under a protocol approved by the
Dana-Farber Institutional Animal Care and Use Committee.

RNA-seq

Total RNA was extracted from MM.1S cells using RNeasy Mini Kit
(Qiagen) after 48 hours of treatment with 1 pmol/L of JQKD82 or
DMSO in biological duplicate. For RNA-seq using MYC-overexpressed
MM.18S cells, external control spike-ins were used to allow normalization
to cell number. Briefly, 8 pL of a 1:100 dilution of ERCC RNA Spike-In
Mix#1 (Thermo Fisher Scientific) was added to the lysate from 5 x 10°
MM.18-MYC or MM.1S-empty cells before RNA extraction. RNAs were
then treated with TURBO DNA-free reagents to remove contaminating
DNA (Thermo Fisher Scientific). The libraries were prepared using NEB-
Next Ultra RNA Library Prep Kit for Illumina (New England Biolabs) or
TruSeq Stranded mRNA Library Prep Kit (Illumina), and subjected to 75
base-pait single-read sequencing on an Illumina HiSeq 2000 or NextSeq
500. Detailed RNA-seq analysis is descrbed in Supplementary Methods.
RNA-seq data have been deposited in the Gene Expression Omnibus
(GEO) database under accession number GSE148047.

ChIP-seq

ChIP procedure is described in Supplementary Methods. The
libraries were constructed from 3 to 10 ng of ChIP samples or 50 ng
of input samples using NEBNext Ultra II DNA Library Prep Kit for
llumina (New England Biolabs), and quantified using GenNext NGS
Library Quantification kit (Toyobo). The fragment length of libraries

was assessed using 2200 TapeStation (Agilent). Seventy-five base-pair
single-read sequencing was performed on an Illumina NextSeq 500.
The MM.1S ChIP-seq data for H3K27Ac (GSM894083), H3K27me3
(GSM1252088), MYC (GSM894108), CDK7 (GSM1121098), CDKY
(GSM1085735), and RNAPIT (GSM1070127) were downloaded from
NCBI (8, 65, 66). Detailed ChIP-seq analysis is descrbed in Sup-
plementary Methods. The ChIP-seq data in this study have been
deposited in the GEO database under accession number GSE148046.

Statistical Analysis

For statistical comparison, two-tailed Student ¢ test was per-
formed between two groups, assuming normal distribution. ICs,
values were determined by nonlinear regression using GraphPad
Prism8 software. Log-rank test was carried our to assess significance
of survival differences using GraphPad Prism8 software. A value of
P < 0.05 was considered statistically significant.

Material Availability

The chemical probes generated in this study will be available for
research purposes through proper material transfer agreement.

Data Availability

RNA-seq and ChIP-seq data have been deposited in the GEO data-
base under SuperSeries accession number GSE148048, which is com-
prised of SubSeries accession numbers GSE148046 and GSE148047.
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